EPR Theoretical Study of the Local Lattice Structure of Fe³⁺ Doped in MgTiO₂ and LiTaO₃

Lei-Lei Pan^a, Xiao-Yu Kuang^{a,b}, Guang-Dong Li^a, and Hui Wang^a

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ^b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

Reprint requests to X.-Y. K.: E-mail: panlei225@163.com

Z. Naturforsch. **62a.** 101 – 106 (2007); received November 9, 2006

The EPR zero-field splittings of Fe³⁺ doped in MgTiO₃ and LiTaO₃ are studied by diagonalizing the complete energy matrices of the electron-electron repulsion, ligand-field and spin-orbit coupling interactions for a d⁵ configuration ion in a trigonal ligand-field. It is shown that, when Fe³⁺ is doped in a MgTiO₃ or LiTaO₃ crystal, the local lattice structure around the octahedral Fe³⁺ center has an obvious distortion along the C_3 axis. By simulating the second- and fourth-order EPR parameters D and (a-F) simultaneously, the local structure parameters of Fe³⁺ doped in MgTiO₃ and LiTaO₃ crystals are determined, which reveal that Fe³⁺ occupies both the Mg²⁺ and Ti⁴⁺ sites in the MgTiO₃:Fe³⁺ system and occupies the Li⁺ site rather than the Ta⁵⁺ site in the LiTaO₃:Fe³⁺ system. The results

accord with the ENDOR and EPR experiments. - PACS numbers: 71.70.Gm; 75.30.Et; 71.70.Ch. Key words: MgTiO₃:Fe³⁺ and LiTaO₃:Fe³⁺ Systems; Local Lattice Structure; EPR Spectrum.